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Force-free fields from Hertz potentials
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Abstract. We show a correspondence between magnetic fields that are eigenvectors of the
curl operator and certain solutions to the source-free Maxwell equations. When the eigenvalue
of the curl is non-constant then the corresponding Maxwell system must be solved in a non-
flat spacetime. We show how the generalized Hertz potential method of solving Maxwell’'s
equations in curved spacetimes can be applied to determine eigenvectors of the curl. In the
case of a constant eigenvalue the Chandrasekhar—Kendall eigenfunctions are recovered. For
non-constant eigenvalue we use the formalism to produce some new force-free fields.

1. Introduction

A force-free fieldB is a three-dimensional divergenceless eigenfunction of the curl operator
V xB =B and V:-B=0 (1)

where in general the eigenvaliemay be a function of position. For constant eigenvalues,
the eigenfunctions of the curl are necessarily divergenceless and in this case the problem is
readily solved [1], although there is still considerable interest in the details of this solution
[2-8]. For non-constant eigenvalues the problem is much harder and only isolated solutions,
mostly due to Low [9-11], are known. The curl equation no longer guarantee®Bitlst
divergenceless, and so this must be imposed as a separate condifibis dh eigenfunction

of the curl operator, thelV - B = 0 is equivalent toVA - B = 0, and so force-free fields

with non-constani are constrained to lie in the level surfacesiof

Discussions of force-free fields are found mostly in the astrophysical literature, where
they have been used to model the magnetic field in the solar corona, but the force-free field
equations appear in several other branches of physics. For example, the same equations
describe the flow of an incompressible fluid for which the vorticity is proportional to the
velocity—a so called Beltrami flow. For examples of these applications see the references
in [4, 6].

In 1957, Chandrasekhar and Kendall [1] showed how solutions of the constant
eigenvalue force-free field equation could be written in terms of solutions of the scalar
Helmholtz equation and a specially chosen vector field. This construction is reminiscent
of Bromwich, Debye and Whittaker's ansatz for the Hertz potential (details can be found
in Nisbet [12]), which allows solutions to Maxwell's equations in a vacuum to be written
in terms of these same special vector fields and two solutions to the scalar wave equation.
If the time dependence of the Maxwell field is given by &, the scalar wave equation
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reduces to the Helmholtz equation and the electric and magnetic fields making up the self-
dual and anti-self-dual parts df, as given by a suitable Debye potential scheme, have
exactly the form of the Chandrasekhar—Kendall force-free field solution with eigenvalues
—w and+w, respectively.

The purpose of this paper is to show that solvifg x B = AB, with A not
necessarily constant, is formally equivalent to solving a source-free Maxwell problem in a
background spacetime that has conformally flat instantaneous space-like slices. This allows
the machinery that has been developed for solving Maxwell's source-free equations in a non-
flat background spacetime, and in particular the curved space generalization of the Debye
potential, to be applied to this problem. In section 4 we first apply the Debye potential
method to reproduce Chandrasekhar and Kendall's solution, and then use the formalism
developed to produce some new non-constant eigenvalue force-free fields.

2. Eigenfunctions of the curl operator as solutions to Maxwell's source-free equations

A source-free electromagnetic field on a four-dimensional Lorentzian manifold is a 2-form
F that is both closed and co-closed
DF =0 and D*F =0. 2)

Here we have usef) for the exterior derivative on differential forms andor the Hodge
duality operator associated with the metric ten€or The operatorD* is the exterior co-
derivative and is given in terms @ andx, when acting orp-forms, bye(—1)PT97+1 4 D «,
wheree is +1 for positive definite metrics and1 for Lorentzian metrics.

The fact that on a four-dimensional Lorentzian manifeldgquares to—1 and maps
2-forms to 2-forms allowsF to be split into its self-dual and anti-self-dual paris, =
F* 4+ F~, where F* = F T i F, which have the property F* = +iF*. Both the
self-dual and anti-self-dual parts separately satisfy Maxwell's equations, which for these
fields can be written simply aB F* = 0.

We consider a product spacetime with the product meétrie —dt?+¢ (g is independent
of r), and look forF* satisfyingF* = iwF*. Here we use a dot over a symbol to denote the
covariant derivative with respect #. If F* and F~ are decomposed into their associated
three-dimensional electric and magnetic vectors, we will find that on the instantaneous space-
like slices these vectors satisfy a curved space generalization of the force-free field equations
(2) with constant eigenvaluesw and+w respectively. Then, wheg is conformally flat,
and the fieldsF* are suitably restricted, non-constant eigenvalue force-free fields can be
constructed.

By the 3-vectorsE and B we mean 4-vectors with ng, component, i.eds(E) =
dt(B) = 0. Theng is a metric on 3-vectors and it has an associated Hodge sdtiadt
acts onp-forms that have ndr components. The relationship betweeandx determines
how the orientation on the whole spacetime is related to that on the space-like slices, and
we will take

*1=dt Ax1.
In order to extract a three-dimensional equation, we define an exterior derivaliye
Da = dt AN a + da.

Since the Maxwell fieldsF* have electric and magnetic 3-vectors relatedBy= +iB,
we can dispense witlZ and write F* in terms B, the dual of B, a magnetic field with
harmonic time dependenc® & iwB). If we write

Ff=+iBAdt+%B
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then Maxwell’'s equationsD F* = 0, reduce to
*dB = FwB. 3

If ¢ is conformally related to the flat metri¢ by ¢ = € g, the Hodge stak associated
with g, when acting on 2-forms (liké B) is given byx = € x. Now we can write equation
3) as

*dB = Foe B. (4)

This can be translated into the notation of the 3-vector calculus by noting éfatis dual
to V x B, and soB is an eigenfunction of the curl with eigenvalgeve”,

V x B = Fw€’ B.

Since the above procedure can be reversed, any eigenfunction of the curl provides a solution
to Maxwell’s source-free equations in a suitably chosen background spacetime. Hence for a
particular eigenvalue, finding eigenfunctions of the curl operator is equivalent to solving a
Maxwell problem for a self-dual or anti-self-dual field of a single frequency. A consequence
of Maxwell's equations (2) is thaB is divergenceless with respect to the conformally flat
metric g, d*B = 0, but this is not the same @B = 0, or equivalentlyV - B = 0 (unless

o = constant), and so we must impose this condition separately if we wish to find force-free
fields.

3. Eigenfunctions of the curl from a Debye potential

In the previous section we demonstrated the equivalence of certain solutions of Maxwell’s
source-free equations to eigenfunctions of the curl, and how this equivalence holds
even for non-constant eigenvalues if we consider the appropriate non-flat background
spacetime. However, the problem of solving the equations still remains. The form of the
Chandrasekhar—Kendall eigenfunctions, that solves this problem for a constant eigenvalue,
reduces the problem to a single scalar equation. In recent years, significant progress has
been made in the understanding of such methods, and in this section we apply a formalism
that achieves such a reduction when the background spacetime admits a privileged tensor;
a conformal Killing—Yano 2-form.

In what follows, we will denote the Laplace—Beltrami operator, curvature scalar,
conformal 2-forms and Ricci 1-forms associated withby A, R, C,, and P,, and use
the conventions of Benn and Tucker [13] for these and other symbols. We will choose
the basis of vector fields to which the labels 6y, and P, refer to be{d;, X;} so that
dt(X;) = 0 andi = 1, 2, 3. With this choice, the Ricci 1-form®; for G are the same as
those forg, with Py identically zero (whereXy = 9,). As a result, the curvature scalars
associated withg and G are also equal and so we need not specify whether we mean
three-dimensional or four-dimensional quantities when we Bisend R. We will denote
the 1-formG-metric dual to the vector fiel@ by X°, and the vectoG-metric dual to the
1-form o by «*. SinceG and g, when acting on vectors with n§ component, are the
same, we can also use the symbblnd® to denote theg-metric duals of 3-vectors and
three-dimensional 1-forms.

3.1. The Debye potential formalism

To construct an anti-self-dual Maxwell field, we will use a self-dual 2-faprh satisfying
the conformal Killing—Yano 2-form equation [14, 15]

3VyPt =X IDPT — X" AD*P* v X. (5)
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As a consequence of equation (B)} is necessarily an eigenform of the conformal curvature

C-P"=1X"IX"|P*Cpo = puP" (6)
for some eigenvalug, and satisfies the additional integrability condition
C.-Pt=1[aPt+1iRPT]. (7)

Using equations (5), (6) and (7), it can be shown [15] that given a scalar Debye potential
f satisfying
Af —§Rf = —uf (8)
an anti-self-dual Maxwell field@~ is given by
F~ =iD[5fD*P — D*(fP)].
To solve equations (5) and (8) on a product background, it is convenient to rewrite them

in terms of differential forms and operators on the three-dimensional instantaneous slices.
First we write P* in terms of the three-dimensional 1-forn(ds («) = 0) as

P=dtrhna+ixa.

We can impose the harmonic time-dependence on the solution by requiring that there are
some constants; andw,, such that

f=iosf and & = iwya.
By consideringX = U, wheredt(U) = 0, we find thaix must satisfy the three-dimensional
equation

Vya = U lde — 3d*aU’ Y U such that dt (U) = 0. 9)

That is,« is a ‘time dependent’ 1-form which, for all values nofis a conformal Killing
1-form with respect tag. Letting X = 9, we find thate must also satisfy the additional
condition 2xr = i *da which, given the assumed harmonic time-dependence becomes

2w, = xda. (20)

Since Pt is an eigenform of the conformal curvature, it follows tlaais an eigenform of
the Ricci curvature

P-a=aX)P = va (11)

wherev = %’R—Z,u. The integrability condition (7) foP™* is equivalent to the integrability
condition foro

P-a=id'da+ idd*a. (12)

To write equation (8) in three-dimensional form, we first denote the Laplace—Beltrami
operator on the space-like slices.asThen decomposing. as. — 9, gives

sf —aRf = (4R —wf?—u) f. (13)
We have chosen to split the term involvifigf so that the left-hand side of equation (13)
is the conformally-covariant Laplace—Beltrami operator in three dimensions.

If the equations forf and« can be solved, then we can obtain solutions to (4) with
w = ws + w, by extractingB from F~, giving

B =x[d,1(dt A F7)]

= (0f —we)*d(fa) +xdxd(fa). (14)
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In terms of the Hodge star of the flat metgc
B = (wf —we)€  *d(fo) + €7 xd(e? *xd(fa))
and so in the notation of the 3-vector calculus we have
B = (v —0,)€°Vx (fa)+e€°V x (e€?7V x (fa)). (15)

3.2. Solving the three-dimensional equations

In finding suitable 1-formsy and scalarsf, the conformal covariance of the three-
dimensional equations (9) and (13) ferand f are of considerable utility. Firstly, equation

1

(13) can be solved by = e 2°W, whereV satisfies
ViU = (2—1472 — wfz — u) v (16)

and V2 is the three-dimensional flat space Laplacian. Since the conformal Killing 1-forms
a are related by the metrig to conformal Killing vectors, solutions to equation (9) are
simply scalings of the flat-space conformal Killing 1-formas

o« =e“a.

However, in general most of these solutions are ruled out by (10), which is not conformally
covariant and must be considered separately. Except in a few simple cases, considerable
work can be saved by considering the consequences of the integrability conditions (11) and
(12). First we note that (10) implies thatis either closed or co-closed fas, = 0 and

wy # 0, respectively. Combining equations (10), (11) and (12) gives

20%a + 3dd*a = va (17)

which whenw, # 0 reads @,%« = va and so the eigenvalue of the Ricci curvature must
be constant. Fow, = 0, taking the exterior derivative of equation (17) givhsAn a = 0,
and so the gradient of the Ricci eigenvalue must be proportional to the corresponding
eigenvector.

Although equation (16) is a flat space equation, the quantRiemnd i are associated
with the conformally-flat metrigz. The curvature scalaR can be written in terms of the
conformal factor and the flat gradient and Laplacian as

R =—€% (2Vo|* + 4V?0) (18)
and using equations (11) and (12) the eigenvaluean be written as
-1z L (| Rarde v 2aar g
H= 6™ 2a@t,ar) S\ [ 27 99 T390 Y] 0¥
1 1 J1 2

4. Solutions to the force-free field equations

As the first step in using the method described in the previous section we need to find an
« that satisfies both the conformal Killing equation (9) and the additional constraint (10).
The general solution to the conformal Killing equation can easily be written dows’as e
times a linear combination of 10 independent flat-space conformal Killing 1-forms. For
some choices of, »d of a conformal Killing 1-form is also a conformal Killing 1-form
(possibly zero) and then it is a simple matter to determine the general solution to both (9)
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and (10). In general it is not that easy, but nevertheless some solutions can be constructed
directly from flat-space conformal Killing 1-forms. If we taketo be a conformal Killing

1-form for g of the formsdu, wheres andu are some scalar functions, and then consider

¢ = s twg, wherew is an arbitrary function of;, we find thate = wdu is a conformal

Killing 1-form for g which clearly satisfies (10) fow, = 0. In this section, we present
some solutions that can be found in this way.

4.1. Chandrasekhar—Kendall eigenfunctions

To solve the force-free field equations for constant eigenvalues, we seb and sog is

flat, for which the solutions to the conformal Killing equation (9) are well known. In flat
spacexd of a conformal Killing 1-form is also conformal Killing and so it is then a simple
matter to see that the only solutions to (10) are the the closed conformal Killing 1-forms,
that is, the generators of translations and dilations. Sifice=- 0 we havew, = 0 and so

we can takev = wy. Equation (13) becomes the scalar Helmholtz equation

V2f +w’f=0
and equation (15) gives Chandrasekhar and Kendall's solution [1]
B=oV x(fa) + VXV x(far)

where a is any constant vector or the radius vectar Since for constant-eigenvalue
eigenfunctions the problem is solved in a flat spacetime, the Chandrasekhar—Kendall
eigenfunctions could have been obtained directly using the 3-vector methods of Debye
and Whittaker.

4.2. Eigenvalue depending on one Cartesian coordinate

Given an eigenvalue that depends only on one Cartesian coordipate can construct a
class of force-free fields from the harmonic functions that depend only on the other two
coordinates in the following manner.

Equations (9) and (10) can be solved immediatelyoby- €°dx and again we have
w = wy. After calculatingR andu using (18) and (19), equation (16) becomes

VAy = (;110’2 - %0” — wzez") v, (20)

The divergence-free property 8fis equivalent taB having nax-component, and by writing
(15) out explicitly, we see that this requires thatsatisfy

Uy, + W, =0.
We can solve folr by separation of variables, giving the solution

¥ = de 27 [A sin (w[e" dx> + Bcos<w/e" dxﬂ

where ® is a harmonic function ofy andz, and A and B are arbitrary constants. So
in 3-vector form, after dividing through bw, we find that divergenceless solutions to
V x B = A(x)B may be written as

B = pV x (®2) + A1V x (pV x (92))
=(0,.p+ ®yp', —Dyp + ©.p')

where p = Asinf 1 dx + Bcos[ Adx. In general, linear combinations of solutions are
also solutions.
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4.3. Eigenvalue depending on the spherical radial coordinate

A similar result to the Cartesian case can be obtained for eigenvalues depending only on
the spherical radial coordinate As in the previous case, (9) and (10) can be solved
by inspection withe = €“rdr andw = w;. W again satisfies equation (20), except
that nowo is a function ofr not x. Again, we proceed by separation of variables, with

W = R@#)P(H, ¢). The equatiorV - B = 0 leads to

V2P =0

for which the only solution, regular on the whole spherepis- constant. However, if one
ray from the origin is excluded, solutions can be found and are given by

®, = (A, sinng + B, cosng) tar (36) n#0 (21)
®o = Ao + Bologtan(36). (22)
The solution to the radial equation
2 1 1
R'+-R + o ol — 0’ |R=0
r 4 2

R = r~1e72% sin (w/ e dr) .

So, after cancelling factors of and € and again dividing through by, we find that
solutions to equation (1) with = A(r) can be written as

B=Vx(x™)+11V xV x (x#) (23)
where

X = i @, sin/k dr. (24)

n=—0oo

Forn = 0, we have explicitly

x = (Ao + Bologtan(36)) sinf Adr.

Taking Bo = —b, we obtain the solution given by Low [11],

b - ~
B = A A .
sind <cos/ dr 6 + sm/ dr ¢>

For the restricted case af = constant, the solution obtained from equations (23) and (24)
has been given by Zaghoul and Barajas [16]. However, this is just a Chandrasekhar—Kendall
eigenfunction that had not been written out explicitly, as it is singular.

4.4. Eigenvalue depending on the cylindrical radial coordinate

It is not possible to find all possible solutions to the force-free field equations by the Debye
potential method described in this paper. For example, the well know solution of Low [9]
with eigenvalue 2(1 + a?p?)~%, given in cylindrical coordinates by

ap ~ 1

- 1+a2p2¢+ 1+a2p2z

B
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cannot be reproduced in this manner, as the product spacetime does not admit a conformal
Killing—Yano 2-form. This solution corresponds to a vacuum Maxwell field in a spacetime
with metric G = —dt? + 4a?(1 + p®)~?g, for which the Ricci tensor has two distinct
eigenvalues of%(3 — a®p?), corresponding to the eigenspace spanneddy d¢}, and
%(1 — a?p?) corresponding to the eigen-1-fordy. Neither eigenvalue is constant and so
we must consider only 1-forms proportional to their gradient, that is, proportiondbto
Since we require that this must be proportional to a flat-space conformal Killing 1-form,
and clearly this cannot be the case, we can see that we cannot solve (9) and (10) in this
case.

To find an eigenvalue of the curl that leads to a spacetime containing a conformal
Killing—Yano 2-form, we can use the fact that the generator of rotations aroung-dles
in flat space is dual t@?d¢. So if we choose® = p—?w(¢) an obvious choice fow is
w(¢)d¢. In order to be able to impos¥ - B = 0, we will make the the more restrictive
choice of & = p~2, in which case we can take = d¢ andw = w;. Equation (16)
becomes

VAW = (3 —0?) p 2w (25)

and for B to be divergenceless requires
1
-0V, + Z\I@ +V¥,, =0. (26)

We cannot in general satisfy both of these conditions, bu iils a function ofp alone,
then equation (26) is identically satisfied and equation (25) becomes

p*W" + pW' + (0 — 211)\11 =0

which has the following solutions:

>3 = \I':ACOS(,/a)Z—ilogp>+BSin<,/w2—i|ng)
W<l = W=ApVi 4By Vi’

o’=3 = W=Alogp+B.

Here we have written the # 211 solution in two ways so that it is explicitly real. This can
be written in a more compact form if we define a constaftty lettingw = /—¢ (g + 1).
Then a solution toV x B = /—q(¢ + Dp 1B is

~ 1
B=p!¢+ ipq’%'
—-q

Note that for each value @ £ 211, there are two possible choices fpg — —g — 1 leaves
o unchanged), and so a linear combination of these two solutions is also a solution. For
the case oty = 7, we have

B:A/m\/gﬁp(:l:,%—a)—i-B’\;(:t%—i—a;).
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5. Conclusions

By establishing the equivalence of eigenfunctions of the curl to certain source-free Maxwell
solutions we have been able to apply the (generalized) Debye potential scheme to the
force-free field problem. When the eigenvalue of the curl is constant we recover the
Chandrasekhar—Kendall eigenfunctions. The choice of véctarr in the Chandrasekhar—
Kendall eigenfunctions corresponds to choosing either the Whittaker or Debye—Bromwich
potential in the equivalent source-free Maxwell problem. It is known that for either of
these choices of Debye potential the class of solutions obtained is complete (excluding the
Coulomb solution) [12]. In either case, all anti-self-dual fields with F = iwF are given

by the Debye potential. So we can conclude that, for either of the two choices of vector,
the Chandrasekhar—Kendall eigenfunctions of the curl are complete.

When the eigenvalug of the curl is not constant then we have an equivalent curved-
space source-free Maxwell problem. This can be solved by the generalized Hertz potential
scheme. In the case af= A(r) andi = A(x), we have found a class of solutions that can
be expressed in a manner very similar to Chandrasekhar and Kendall's original cénstant-
solutions. They are given in terms of a scalar function that is harmonic on the magnetic
surfaces, respectively = constant and = constant. Whereas many other solutions to the
eigenvalue problem can be found, they will not necessarily saWsfyB = 0. In particular,
if e = 2(r%> + ¢)71, then the spacetime is of constant curvatuyeand there are many
solutions to equations (9) and (10).

It is known that conformal Killing—Yano tensors can only exist in certain algebraically-
special spacetimes. This fact can be used to restrict the possible eigenvalues of the curl
that can be found by the methods of this paper. It is also possible to reduce Maxwell's
equations to a scalar equation under slightly less restrictive conditions than the existence
of a conformal Killing—Yano tensor. In principle this could be used to find other force-
free fields with non-constant eigenvalue. A detailed report of Debye potential methods for
solving the curved spacetime Maxwell equations will be given elsewhere [15].
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