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Force-free fields from Hertz potentials

I M Benn† and Jonathan Kress‡
Department of Mathematics, Newcastle University, NSW 2308, Australia

Received 14 June 1996

Abstract. We show a correspondence between magnetic fields that are eigenvectors of the
curl operator and certain solutions to the source-free Maxwell equations. When the eigenvalue
of the curl is non-constant then the corresponding Maxwell system must be solved in a non-
flat spacetime. We show how the generalized Hertz potential method of solving Maxwell’s
equations in curved spacetimes can be applied to determine eigenvectors of the curl. In the
case of a constant eigenvalue the Chandrasekhar–Kendall eigenfunctions are recovered. For
non-constant eigenvalue we use the formalism to produce some new force-free fields.

1. Introduction

A force-free fieldB is a three-dimensional divergenceless eigenfunction of the curl operator

∇ × B = λB and ∇ · B = 0 (1)

where in general the eigenvalueλ may be a function of position. For constant eigenvalues,
the eigenfunctions of the curl are necessarily divergenceless and in this case the problem is
readily solved [1], although there is still considerable interest in the details of this solution
[2–8]. For non-constant eigenvalues the problem is much harder and only isolated solutions,
mostly due to Low [9–11], are known. The curl equation no longer guarantees thatB is
divergenceless, and so this must be imposed as a separate condition. IfB is an eigenfunction
of the curl operator, then∇ · B = 0 is equivalent to∇λ · B = 0, and so force-free fields
with non-constantλ are constrained to lie in the level surfaces ofλ.

Discussions of force-free fields are found mostly in the astrophysical literature, where
they have been used to model the magnetic field in the solar corona, but the force-free field
equations appear in several other branches of physics. For example, the same equations
describe the flow of an incompressible fluid for which the vorticity is proportional to the
velocity—a so called Beltrami flow. For examples of these applications see the references
in [4, 6].

In 1957, Chandrasekhar and Kendall [1] showed how solutions of the constant
eigenvalue force-free field equation could be written in terms of solutions of the scalar
Helmholtz equation and a specially chosen vector field. This construction is reminiscent
of Bromwich, Debye and Whittaker’s ansatz for the Hertz potential (details can be found
in Nisbet [12]), which allows solutions to Maxwell’s equations in a vacuum to be written
in terms of these same special vector fields and two solutions to the scalar wave equation.
If the time dependence of the Maxwell fieldF is given by eiωt , the scalar wave equation
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reduces to the Helmholtz equation and the electric and magnetic fields making up the self-
dual and anti-self-dual parts ofF , as given by a suitable Debye potential scheme, have
exactly the form of the Chandrasekhar–Kendall force-free field solution with eigenvalues
−ω and+ω, respectively.

The purpose of this paper is to show that solving∇ × B = λB, with λ not
necessarily constant, is formally equivalent to solving a source-free Maxwell problem in a
background spacetime that has conformally flat instantaneous space-like slices. This allows
the machinery that has been developed for solving Maxwell’s source-free equations in a non-
flat background spacetime, and in particular the curved space generalization of the Debye
potential, to be applied to this problem. In section 4 we first apply the Debye potential
method to reproduce Chandrasekhar and Kendall’s solution, and then use the formalism
developed to produce some new non-constant eigenvalue force-free fields.

2. Eigenfunctions of the curl operator as solutions to Maxwell’s source-free equations

A source-free electromagnetic field on a four-dimensional Lorentzian manifold is a 2-form
F that is both closed and co-closed

DF = 0 and D∗F = 0. (2)

Here we have usedD for the exterior derivative on differential forms and∗ for the Hodge
duality operator associated with the metric tensorG. The operatorD∗ is the exterior co-
derivative and is given in terms ofD and∗, when acting onp-forms, byε(−1)(p+1)n+1 ∗ D ∗,
whereε is +1 for positive definite metrics and−1 for Lorentzian metrics.

The fact that on a four-dimensional Lorentzian manifold∗ squares to−1 and maps
2-forms to 2-forms allowsF to be split into its self-dual and anti-self-dual parts,F =
F+ + F−, where 2F± = F ∓ i ∗ F , which have the property∗ F± = ±iF±. Both the
self-dual and anti-self-dual parts separately satisfy Maxwell’s equations, which for these
fields can be written simply asDF± = 0.

We consider a product spacetime with the product metricG = −dt2+g (g is independent
of t), and look forF± satisfyingḞ± = iωF±. Here we use a dot over a symbol to denote the
covariant derivative with respect to∂t . If F+ andF− are decomposed into their associated
three-dimensional electric and magnetic vectors, we will find that on the instantaneous space-
like slices these vectors satisfy a curved space generalization of the force-free field equations
(1) with constant eigenvalues−ω and+ω respectively. Then, wheng is conformally flat,
and the fieldsF± are suitably restricted, non-constant eigenvalue force-free fields can be
constructed.

By the 3-vectorsE and B we mean 4-vectors with no∂t component, i.e.dt (E) =
dt (B) = 0. Theng is a metric on 3-vectors and it has an associated Hodge dual? that
acts onp-forms that have nodt components. The relationship between∗ and? determines
how the orientation on the whole spacetime is related to that on the space-like slices, and
we will take

∗ 1 = dt ∧ ? 1.

In order to extract a three-dimensional equation, we define an exterior derivatived by

Dα = dt ∧ α̇ + dα.

Since the Maxwell fieldsF± have electric and magnetic 3-vectors related byE = ±iB,
we can dispense withE and writeF± in termsB, the dual ofB, a magnetic field with
harmonic time dependence (Ḃ = iωB). If we write

F± = ±iB ∧ dt + ? B
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then Maxwell’s equations,DF± = 0, reduce to

? dB = ∓ωB. (3)

If g is conformally related to the flat metricg by g = e2σ g, the Hodge star? associated
with g, when acting on 2-forms (likedB) is given by? = eσ ?. Now we can write equation
(3) as

? dB = ∓ωeσB. (4)

This can be translated into the notation of the 3-vector calculus by noting that? dB is dual
to ∇ × B, and soB is an eigenfunction of the curl with eigenvalue∓ωeσ ,

∇ × B = ∓ωeσB.

Since the above procedure can be reversed, any eigenfunction of the curl provides a solution
to Maxwell’s source-free equations in a suitably chosen background spacetime. Hence for a
particular eigenvalue, finding eigenfunctions of the curl operator is equivalent to solving a
Maxwell problem for a self-dual or anti-self-dual field of a single frequency. A consequence
of Maxwell’s equations (2) is thatB is divergenceless with respect to the conformally flat
metric g, d?B = 0, but this is not the same asd?B = 0, or equivalently∇ · B = 0 (unless
σ = constant), and so we must impose this condition separately if we wish to find force-free
fields.

3. Eigenfunctions of the curl from a Debye potential

In the previous section we demonstrated the equivalence of certain solutions of Maxwell’s
source-free equations to eigenfunctions of the curl, and how this equivalence holds
even for non-constant eigenvalues if we consider the appropriate non-flat background
spacetime. However, the problem of solving the equations still remains. The form of the
Chandrasekhar–Kendall eigenfunctions, that solves this problem for a constant eigenvalue,
reduces the problem to a single scalar equation. In recent years, significant progress has
been made in the understanding of such methods, and in this section we apply a formalism
that achieves such a reduction when the background spacetime admits a privileged tensor;
a conformal Killing–Yano 2-form.

In what follows, we will denote the Laplace–Beltrami operator, curvature scalar,
conformal 2-forms and Ricci 1-forms associated withG by 4, R, Cab and Pa, and use
the conventions of Benn and Tucker [13] for these and other symbols. We will choose
the basis of vector fields to which the labels onCab and Pa refer to be{∂t , Xi} so that
dt (Xi) = 0 andi = 1, 2, 3. With this choice, the Ricci 1-formsPi for G are the same as
those forg, with P0 identically zero (whereX0 = ∂t ). As a result, the curvature scalars
associated withg and G are also equal and so we need not specify whether we mean
three-dimensional or four-dimensional quantities when we usePi and R. We will denote
the 1-formG-metric dual to the vector fieldX by X[, and the vectorG-metric dual to the
1-form α by α]. SinceG and g, when acting on vectors with no∂t component, are the
same, we can also use the symbols[ and ] to denote theg-metric duals of 3-vectors and
three-dimensional 1-forms.

3.1. The Debye potential formalism

To construct an anti-self-dual Maxwell field, we will use a self-dual 2-formP + satisfying
the conformal Killing–Yano 2-form equation [14, 15]

3∇XP + = X DP + − X[ ∧ D∗P + ∀ X. (5)
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As a consequence of equation (5),P + is necessarily an eigenform of the conformal curvature

C · P + ≡ 1
2Xa Xb P +Cba = µP + (6)

for some eigenvalueµ, and satisfies the additional integrability condition

C · P + = 1
3

[4P + + 1
2RP +]

. (7)

Using equations (5), (6) and (7), it can be shown [15] that given a scalar Debye potential
f satisfying

4f − 1
6Rf = −µf (8)

an anti-self-dual Maxwell fieldF− is given by

F− = iD
[

2
3f D∗P − D∗ (f P )

]
.

To solve equations (5) and (8) on a product background, it is convenient to rewrite them
in terms of differential forms and operators on the three-dimensional instantaneous slices.
First we writeP + in terms of the three-dimensional 1-formα (dt (α) = 0) as

P = dt ∧ α + i ? α.

We can impose the harmonic time-dependence on the solution by requiring that there are
some constantsωf andωα, such that

ḟ = iωf f and α̇ = iωαα.

By consideringX = U , wheredt (U) = 0, we find thatα must satisfy the three-dimensional
equation

∇Uα = 1
2U dα − 1

3d?αU[ ∀ U such that dt (U) = 0. (9)

That is,α is a ‘time dependent’ 1-form which, for all values oft , is a conformal Killing
1-form with respect tog. Letting X = ∂t we find thatα must also satisfy the additional
condition 2̇α = i ? dα which, given the assumed harmonic time-dependence ofα, becomes

2ωαα = ? dα. (10)

SinceP + is an eigenform of the conformal curvature, it follows thatα is an eigenform of
the Ricci curvature

P · α ≡ α(Xi)Pi = να (11)

whereν = 1
3R−2µ. The integrability condition (7) forP + is equivalent to the integrability

condition forα

P · α = 1
2d?dα + 2

3dd?α. (12)

To write equation (8) in three-dimensional form, we first denote the Laplace–Beltrami
operator on the space-like slices as4. Then decomposing4 as 4 − ∂t

2 gives

4f − 1
8Rf = (

1
24R − ωf

2 − µ
)
f. (13)

We have chosen to split the term involvingRf so that the left-hand side of equation (13)
is the conformally-covariant Laplace–Beltrami operator in three dimensions.

If the equations forf and α can be solved, then we can obtain solutions to (4) with
ω = ωf + ωα by extractingB from F−, giving

B = ?
[
∂t (dt ∧ F−)

]
= (ωf − ωα) ? d(f α) + ? d ? d(f α). (14)



Force-free fields from Hertz potentials 6299

In terms of the Hodge star of the flat metricg

B = (ωf − ωα)e−σ ? d(f α) + e−σ ? d(e−σ ? d(f α))

and so in the notation of the 3-vector calculus we have

B = (ωf − ωα)e−σ∇ × (f α) + e−σ∇ × (e−σ∇ × (f α)). (15)

3.2. Solving the three-dimensional equations

In finding suitable 1-formsα and scalarsf , the conformal covariance of the three-
dimensional equations (9) and (13) forα andf are of considerable utility. Firstly, equation
(13) can be solved byf = e− 1

2 σ9, where9 satisfies

∇29 = (
1
24R − ωf

2 − µ
)

e2σ9 (16)

and∇2 is the three-dimensional flat space Laplacian. Since the conformal Killing 1-forms
α are related by the metricg to conformal Killing vectors, solutions to equation (9) are
simply scalings of the flat-space conformal Killing 1-formsα:

α = e2σα.

However, in general most of these solutions are ruled out by (10), which is not conformally
covariant and must be considered separately. Except in a few simple cases, considerable
work can be saved by considering the consequences of the integrability conditions (11) and
(12). First we note that (10) implies thatα is either closed or co-closed forωα = 0 and
ωα 6= 0, respectively. Combining equations (10), (11) and (12) gives

2ωα
2α + 2

3dd?α = να (17)

which whenωα 6= 0 reads 2ωα
2α = να and so the eigenvalue of the Ricci curvature must

be constant. Forωα = 0, taking the exterior derivative of equation (17) givesdν ∧ α = 0,
and so the gradient of the Ricci eigenvalue must be proportional to the corresponding
eigenvector.

Although equation (16) is a flat space equation, the quantitiesR andµ are associated
with the conformally-flat metricg. The curvature scalarR can be written in terms of the
conformal factor and the flat gradient and Laplacian as

R = −e−2σ
(
2|∇σ |2 + 4∇2σ

)
(18)

and using equations (11) and (12) the eigenvalueµ can be written as

µ = 1

6
R − 1

2g(α], α])
g

([
1

2
d?dα + 2

3
dd?α

]]

, α]

)

= 1

6
R − 1

2|α|2
[

1

2
e−σ∇ × (

e−σ (∇ × α)
) − 2

3
∇ (

e−3σ∇ · (eσα)
)] · α. (19)

4. Solutions to the force-free field equations

As the first step in using the method described in the previous section we need to find an
α that satisfies both the conformal Killing equation (9) and the additional constraint (10).
The general solution to the conformal Killing equation can easily be written down as e2σ

times a linear combination of 10 independent flat-space conformal Killing 1-forms. For
some choices ofσ , ? d of a conformal Killing 1-form is also a conformal Killing 1-form
(possibly zero) and then it is a simple matter to determine the general solution to both (9)
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and (10). In general it is not that easy, but nevertheless some solutions can be constructed
directly from flat-space conformal Killing 1-forms. If we takeα to be a conformal Killing
1-form for g of the formsdu, wheres andu are some scalar functions, and then consider
g = s−1wg, wherew is an arbitrary function ofu, we find thatα = wdu is a conformal
Killing 1-form for g which clearly satisfies (10) forωα = 0. In this section, we present
some solutions that can be found in this way.

4.1. Chandrasekhar–Kendall eigenfunctions

To solve the force-free field equations for constant eigenvalues, we setσ = 0 and sog is
flat, for which the solutions to the conformal Killing equation (9) are well known. In flat
space,? d of a conformal Killing 1-form is also conformal Killing and so it is then a simple
matter to see that the only solutions to (10) are the the closed conformal Killing 1-forms,
that is, the generators of translations and dilations. Sincedα = 0 we haveωα = 0 and so
we can takeω = ωf . Equation (13) becomes the scalar Helmholtz equation

∇2f + ω2f = 0

and equation (15) gives Chandrasekhar and Kendall’s solution [1]

B = ω∇ × (f α) + ∇ × ∇ × (f α)

where α is any constant vector or the radius vectorr. Since for constant-eigenvalue
eigenfunctions the problem is solved in a flat spacetime, the Chandrasekhar–Kendall
eigenfunctions could have been obtained directly using the 3-vector methods of Debye
and Whittaker.

4.2. Eigenvalue depending on one Cartesian coordinatex

Given an eigenvalue that depends only on one Cartesian coordinatex, we can construct a
class of force-free fields from the harmonic functions that depend only on the other two
coordinates in the following manner.

Equations (9) and (10) can be solved immediately byα = e2σ dx and again we have
ω = ωf . After calculatingR andµ using (18) and (19), equation (16) becomes

∇29 =
(

1
4σ ′2 − 1

2σ ′′ − ω2e2σ
)

9. (20)

The divergence-free property ofB is equivalent toB having nox-component, and by writing
(15) out explicitly, we see that this requires that9 satisfy

9yy + 9zz = 0.

We can solve for9 by separation of variables, giving the solution

9 = 8e− 1
2 σ

[
A sin

(
ω

∫
eσ dx

)
+ B cos

(
ω

∫
eσ dx

)]
where 8 is a harmonic function ofy and z, and A and B are arbitrary constants. So
in 3-vector form, after dividing through byω, we find that divergenceless solutions to
∇ × B = λ(x)B may be written as

B = p∇ × (8x̂) + λ−1∇ × (
p∇ × (8x̂)

)
= (

0, 8zp + 8yp
′, −8yp + 8zp

′)
wherep = A sin

∫
λ dx + B cos

∫
λ dx. In general, linear combinations of solutions are

also solutions.
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4.3. Eigenvalue depending on the spherical radial coordinater

A similar result to the Cartesian case can be obtained for eigenvalues depending only on
the spherical radial coordinater. As in the previous case, (9) and (10) can be solved
by inspection withα = e2σ rdr and ω = ωf . 9 again satisfies equation (20), except
that nowσ is a function ofr not x. Again, we proceed by separation of variables, with
9 = R(r)8(θ, φ). The equation∇ · B = 0 leads to

∇28 = 0

for which the only solution, regular on the whole sphere, is8 = constant. However, if one
ray from the origin is excluded, solutions can be found and are given by

8n = (An sinnφ + Bn cosnφ) tann( 1
2θ) n 6= 0 (21)

80 = A0 + B0 log tan( 1
2θ). (22)

The solution to the radial equation

R′′ + 2

r
R′ +

(
1

4
σ ′2 − 1

2
σ ′′ − ω2e2σ

)
R = 0

is

R = r−1e− 1
2 σ sin

(
ω

∫
eσ dr

)
.

So, after cancelling factors ofr and eσ and again dividing through byω, we find that
solutions to equation (1) withλ = λ(r) can be written as

B = ∇ × (χ r̂) + λ−1∇ × ∇ × (χ r̂) (23)

where

χ =
∞∑

n=−∞
8n sin

∫
λ dr. (24)

For n = 0, we have explicitly

χ = (
A0 + B0 log tan( 1

2θ)
)

sin
∫

λ dr.

Taking B0 = −b, we obtain the solution given by Low [11],

B = b

r sinθ

(
cos

∫
λ dr θ̂ + sin

∫
λ dr φ̂

)
.

For the restricted case ofλ = constant, the solution obtained from equations (23) and (24)
has been given by Zaghoul and Barajas [16]. However, this is just a Chandrasekhar–Kendall
eigenfunction that had not been written out explicitly, as it is singular.

4.4. Eigenvalue depending on the cylindrical radial coordinateρ

It is not possible to find all possible solutions to the force-free field equations by the Debye
potential method described in this paper. For example, the well know solution of Low [9]
with eigenvalue 2a(1 + a2ρ2)−1, given in cylindrical coordinates by

B = aρ

1 + a2ρ2
φ̂ + 1

1 + a2ρ2
ẑ
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cannot be reproduced in this manner, as the product spacetime does not admit a conformal
Killing–Yano 2-form. This solution corresponds to a vacuum Maxwell field in a spacetime
with metric G = −dt2 + 4a2(1 + ρ2)−2g, for which the Ricci tensor has two distinct
eigenvalues of12(3 − a2ρ2), corresponding to the eigenspace spanned by{dρ, dφ}, and
1
2(1 − a2ρ2) corresponding to the eigen-1-formdz. Neither eigenvalue is constant and so
we must consider only 1-forms proportional to their gradient, that is, proportional todρ.
Since we require that this must be proportional to a flat-space conformal Killing 1-form,
and clearly this cannot be the case, we can see that we cannot solve (9) and (10) in this
case.

To find an eigenvalue of the curl that leads to a spacetime containing a conformal
Killing–Yano 2-form, we can use the fact that the generator of rotations around thez-axis
in flat space is dual toρ2dφ. So if we choose e2σ = ρ−2w(φ) an obvious choice forα is
w(φ)dφ. In order to be able to impose∇ · B = 0, we will make the the more restrictive
choice of e2σ = ρ−2, in which case we can takeα = dφ and ω = ωf . Equation (16)
becomes

∇29 = (
1
4 − ω2

)
ρ−29 (25)

and forB to be divergenceless requires

−ω9z + 1

2ρ
9φ + 9ρφ = 0. (26)

We cannot in general satisfy both of these conditions, but if9 is a function ofρ alone,
then equation (26) is identically satisfied and equation (25) becomes

ρ29 ′′ + ρ9 ′ + (
ω2 − 1

4

)
9 = 0

which has the following solutions:

ω2 > 1
4 ⇒ 9 = A cos

(√
ω2 − 1

4 logρ

)
+ B sin

(√
ω2 − 1

4 logρ

)

ω2 < 1
4 ⇒ 9 = Aρ

√
1
4 −ω2 + Bρ−

√
1
4 −ω2

ω2 = 1
4 ⇒ 9 = A logρ + B .

Here we have written theω 6= 1
4 solution in two ways so that it is explicitly real. This can

be written in a more compact form if we define a constantq by letting ω = √−q(q + 1).
Then a solution to∇ × B = √−q(q + 1)ρ−1B is

B = ρq φ̂ +
√

q + 1

−q
ρq ẑ.

Note that for each value ofω 6= 1
4, there are two possible choices forq (q → −q −1 leaves

ω unchanged), and so a linear combination of these two solutions is also a solution. For
the case ofω = 1

4, we have

B = A′ logρ√
ρ

(±ẑ − φ̂
) + B ′ 1√

ρ

(±ẑ + φ̂
)
.
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5. Conclusions

By establishing the equivalence of eigenfunctions of the curl to certain source-free Maxwell
solutions we have been able to apply the (generalized) Debye potential scheme to the
force-free field problem. When the eigenvalue of the curl is constant we recover the
Chandrasekhar–Kendall eigenfunctions. The choice of vectorẑ or r in the Chandrasekhar–
Kendall eigenfunctions corresponds to choosing either the Whittaker or Debye–Bromwich
potential in the equivalent source-free Maxwell problem. It is known that for either of
these choices of Debye potential the class of solutions obtained is complete (excluding the
Coulomb solution) [12]. In either case, all anti-self-dual fieldsF− with Ḟ = iωF are given
by the Debye potential. So we can conclude that, for either of the two choices of vector,
the Chandrasekhar–Kendall eigenfunctions of the curl are complete.

When the eigenvalueλ of the curl is not constant then we have an equivalent curved-
space source-free Maxwell problem. This can be solved by the generalized Hertz potential
scheme. In the case ofλ = λ(r) andλ = λ(x), we have found a class of solutions that can
be expressed in a manner very similar to Chandrasekhar and Kendall’s original constant-λ

solutions. They are given in terms of a scalar function that is harmonic on the magnetic
surfaces, respectivelyr = constant andx = constant. Whereas many other solutions to the
eigenvalue problem can be found, they will not necessarily satisfy∇·B = 0. In particular,
if eσ = 2(r2 + c)−1, then the spacetime is of constant curvaturec, and there are many
solutions to equations (9) and (10).

It is known that conformal Killing–Yano tensors can only exist in certain algebraically-
special spacetimes. This fact can be used to restrict the possible eigenvalues of the curl
that can be found by the methods of this paper. It is also possible to reduce Maxwell’s
equations to a scalar equation under slightly less restrictive conditions than the existence
of a conformal Killing–Yano tensor. In principle this could be used to find other force-
free fields with non-constant eigenvalue. A detailed report of Debye potential methods for
solving the curved spacetime Maxwell equations will be given elsewhere [15].
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